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Abstract— A method for generating the attainable mo-

ment set for a class of multiple non-linear control effec-
tors is presented. The Jacobian Rank Deficiency Crite-
ria from Swept Volume Theory is used to determine a
set of control effector positions that in turn determine
a set of candidate surfaces that comprise the boundary
of the attainable moment set. The first order necessary
conditions are derived for a point to be on the bound-
ary by considering a non-linear programming problem.
An algorithm is given where the Kuhn-Tucker points
for a given point in the pitch-roll plane are constructed
for each control effector configuration that forms a can-
didate boundary. The Kuhn-Tucker points are then
checked for feasibility, and the points on the boundary
are the ones that maximize and minimize the objective
function. This method is computationally efficient de-
spite the fact that a large set of points in is searched
since the evaluation of the Kuhn-Tucker points is straight
forward and less computationally intensive than those
methods which require an exhaustive search over every
point on each candidate surface.
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1. INTRODUCTION

Concepts for future aerospace vehicles often have redun-
dant control effectors in order to optimize vehicle per-
formance and to make the aircraft more robust to po-
tential failures. One such example is the X-33, which
has eight control surfaces that are capable of being ac-
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tuated independently. Because the X-33 is unlike tradi-
tional aircraft, which have only a single control effector
controlling the vehicle’s attitude about one axis, the re-
lationship between control effector and control axis is
not “one-to-one.” Therefore, whenever the number of
effectors exceeds the number of axes being controlled,
allocating control effectors is necessary to achieve the
desired vehicle response.

Numerous control allocation and control effector mix-
ing algorithms have been developed over the past decade
and excellent survey papers have been written that point
out the strengths and weaknesses of the existing ap-
proaches [1]. These control mixing and control allocation
algorithms are capable of dealing with systems where
the moments are linearly related to control effector po-
sitions and have the ability to account for constraints on
those positions. Some of these algorithms generate con-
strained control effector commands that ensure that the
effectors are never driven beyond their physical limits.
Most of the algorithms, however, assume that linear rela-
tionships exist between the pseudo-commands (i.e., con-
trolled variable commands) and the effector positions.
While this assumption is at least locally valid for many
of the control surfaces found on aircraft, there are ex-
ceptions.

One particular case where this assumption can result
in incorrect control surface deflections and return un-
necessarily conservative results involves the use of left-
right aerodynamic control surfaces on aircraft. Exam-
ples of left-right aerodynamic surfaces include left-right
elevators and left-right ailerons. This type of surface
can generally produce pitching, rolling and yawing mo-
ments. While these surfaces normally produce pitching
and rolling moments that are locally linear in control sur-
face deflection, they can have a highly nonlinear contri-
bution to the yawing moment especially when parasitic
drag dominates induced drag effects.

In particular, these surfaces can generate yawing mo-
ments that are of the same sign whether they are de-
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component of acceleration normal to the surface and the
acceleration along the principal normal.” The accelera-
tion parameter defined in Reference (6] is

n=a, — kv (19)

where a,, is the projection of the acceleration on the
unit normal at a given point on a candidate surface, and
K v? is the normal acceleration, as would be defined in
the Frenet-Serret coordinate frame. While the principal
normal is directed towards the instantaneous center of
curvature for a curve in R3, the definition of the princi-
pal normal for a point on a surface is ambiguous since it
depends upon the path that the particle is moving. Nev-
ertheless, the authors of Reference [6] show using differ-
ential geometry that if the particle is indeed travelling on
a surface that is a boundary, then 7, which is a quadratic
form, will be either positive or negative semi-definite.
This result is further augmented with an additional con-
dition that must be met if one or more of the parameters
is set at an upper or lower bound. The derivation and
the algorithm for computing the quadratic form, 7, can
be found in Reference [6).

An New Method for the Determination of the AMS Volume

As stated previously, the composite AMS is generated by
translating the origin of the AMS for one left-right pair
to every point on the AMS for the second left-right pair.
We also know, from using the Jacobian rank deficiency
criteria, the set of control surface deflections that will
generate the candidate surfaces for the AMS boundary.

In this section, we will address the approach of Doman
and Sparks and show how to extend it to the problem of
computing the AMS for all three axes. The theorem de-
veloped independently by Doman and Sparks and found
in Reference [3] gives a necessary condition for a point
to lie on the composite boundary. Simply stated, for a
composite function that is the sum of two functions,

h(z,Z) = f(2) + 9(z - %) 0

the necessary condition for a point to be on the boundary
of the composite function is

ﬁg(z - j'"3)l Lo ;%f(f)l .. @n

The proof is omitted here but can be found in Refer-
ence [3]. It is important to note that there is no re-
striction on the dimension of x. Therefore, for any fixed
value of z, we can determine the optimum value of Z
where g(z — I) attaches to f(Z) in order to maximize or
minimize h(z, ).

In order to apply the above necessary condition to the de-
termination of the composite AMS, two additional lem-
mas are needed in order to account for the fact that there
are bounds on the variables z — % and Z, which in turn

set limits on their respective functions. The lemmas are
repeated here for completeness:

Lemma 1: If (x — Z*) > Tmaz, then the boundary point is
given by P[Z* + Tmaz,, h_(mmaz,, z*))

Lemma 2: If (z — Z*) < Tpin, then the boundary point is
given by P[Z* + Zmin,, hH(Tmin,, Z*)]

Doman and Sparks successfully implemented their ap-
proach and were able to determine the AMS boundary
for the case where the rolling moment was a linear func-
tion of the control displacement and the yawing moment
was a second order function of control surface displace-
ment, as shown in Figure 1. It is important to note that
the result that was achieved was not for the case where
the pitching moment was constrained to zero. Instead,
their composite AMS was a projection of the AMS vol-
ume onto the roll-yaw plane. The question of how to
apply the above result to the determination of the AMS
volume still remained.

‘We know from the Jacobian rank deficiency criteria that
we have to consider all combinations of pairs of control
effectors set at their upper and lower limits. In addition,
there are four additional singular surfaces that arise from
the reduced order Jacobians. What we present here is an
outline of how to determine the boundary of the AMS
when given any point in the L-M plane. For purposes of
illustration, we will only combinations of d; and d4 set at
their position limits. In actuality, all the control surface
deflections that are in the set S5 must be evaluated. The
minimum (or maximum) yawing moment is determined
by forming and searching an array of yawing moments
generated by all the pairs in the set S for a given point
(L, M).

Begin by considering the moment equations for the 1-2
pair.

Ly =K;(61 — 82) (22)
Mz =K (01 + 82) (23)
N1z =Kn(8} - 63) (29)

where K, Km, K, are the rolling, pitching, and yawing
control derivatives respectively. Eliminating the param-
eter 63, we can write the pitching and yawing moments
as functions of the rolling moment.

L

Mia(L12) =Km (262 + 7(113 (25)
L%, _Lyd, '

N12(L12) _KH(F? + 2-71') ) (26)

Repeating the process for the 3-4 effector pair to elimi-




nate d3 subsequently yields

L3y

% @

M34(L34) =Chn (254+

L34

N34(L34) C( +254 C
1

ol (28)

where C;, Cn,, and C, are the rolling, pitching, and
yawing control derivatives respectively.

In order to compute the AMS volume, we will assume
that all ordered pairs (L, M) can be computed a priori.
We fix L and M at some arbitrary value and let L34 =
L — L (the choice of notation here is to be consistent
with Reference [3]). The equations for the pitching and
yawing moments then become

M= Km(262+--)+Cm(264+ CL) 29)
I2 : _F

N= K,.(K2+2L62) cn((L L)2+2(L Cf”“)

30)

If we were not concerned with the pitching moment, we
would simply apply the theorem in Reference [3] and dif-
ferentiate Equation 30 and solve for the attaching point,
L. Because we are including an additional equation for
the pitching moment, an equality constraint must be
added to our objective function. Furthermore, since 2
or dsha ve physical limits, these constraints must be in-
cluded in the objective function as inequality constraints.
The downside is that we must now solve a non-linear pro-
gramming problem with a single equality constraint and
four inequality constraints in order to find the bound-
ary that encloses the AMS. By including the inequality
constraints for control effectors, we no longer have to
carry along Lemmas 1 and 2 as they are now accounted
for in the objective function. We form the following La-
grangian by augmenting Equation 30 with the equality
and inequality constraints:

_ L? Lé, (L-L)? (L L),
2= K(K2+2K[) on (G5 4287 0%)

—A(M—Km (262+—I%-) —Cnm (264+-(-P—51—E)-))

— u1(82 — 82) — up(82 — 8p) — u3(8s — 8a) — ua(Ss — &4)
31

Differentiating the Lagrangian with respect to L, &5, d4,

and A gives the first order necessary conditions:

0% _  Kn
5= K2 2 (L+Kib) + 2@ (L-L+Cid)
Cm Kn

(&-%) &
92 _ 25—L + 20 K +u1 — ug (33)
YA
X% c
0_54—2.671 (L—L)+2XCr + u3 — ug (34
X% L L-1L
%= M — K..(262 + E) —Cn (264 + —) (3%

C

Setting Equations 32-35 equal to zero and solving for L,
82, 04, and A yields

= _ Kl(2CnKmL + CiCrnuz — Cleu4)

L= T 3G KK + Ok 9
b = —2Cn KL+ 2Co KIM — 2C1ug + u4(Cm K + C1K )
A(CrK1Km + CIC Ky)
37
by = —2CmKnL + 2C1Ko M + u2(Cr K1+ C1Kp) — 2K1 K g
4(CrK1Km + CiICmKy)
' (39%)
A= ~2Cp, KL+ CoKjuz + C1 K uy 39)
2(CnKi K + CiCmKy)

When solving the optimization problem, we must also
consider the following equality and inequality con-
straints:

u1(32 - 52) =0 (40)
u2(62 - éz) =0 (41)
us (34 - 54) =0 (42)
us(8s—8,) =0 @3)
Uy, Uz, Uz, ug > 0 . (44)

We must evaluate all the possible combinations of 2 and
d4 taken one at time and two at a time. This will result
in eight different Kuhn-Tucker points to consider. If all
the inequality and equality constraints are satisfied, only
then is the Kuhn-Tucker point considered as a feasible
solution. A tally of the feasible Kuhn-Tucker points is
kept until all the surfaces defined by the points in S are
searched for feasible Kuhn-Tucker points for the given
values of L and M. Once the tally is completed, then the
minimum value of N can be found. It is this value which
lies on the boundary of the AMS. Note that it is possible
for there to be multiple sets of control surface deflections
that will produce the same point on the boundary.

For example, we take the control derivatives to have
the following values: K; = 4610 ft-lb/deg, K, =




flected up or down. This is because they generate a drag
force on the side of the vehicle on which they are located
regardless of whether they deflected in the positive or
negative direction. The yawing moments generated by
these effectors are usually small when compared to a pri-
mary yaw-axis effector like a rudder; however, their ef-
fects can become significant when a rudder fails or when
the aircraft is operating at high angles of attack where
flow over the rudder is interrupted by the body.

This particular nonlinearity is used as motivation and
serves as an example for the methods explored in this
paper. Methods for generating an attainable moment set
for a class of multiple non-linear effectors are presented.

2. ATTAINABLE MOMENT SET FOR A SINGLE
LEFT-RIGHT PAIR

Durham [2] developed and subsequently refined meth-
ods for determining attainable moment sets (AMS) for
effectors that generate moments M that are linear func-
tions M = B#é of the effector positions § subject to
constraints on those positions § = {8]5 € [J,6]}. The
general solution to finding the attainable moment set
for an over-actuated linear system with position con-
straints involves constructing a polyhedron in moment
space. Potential vertices are constructed by locking all
control effectors at their extreme positions in all possi-
ble combinations while allowing two effectors to traverse
the range of their possible positions. Durham’s algo-
rithm connected the vertices to form potential boundary
facets and determined which facets were on the bound-
ary of the AMS.

Left-right (LR) pairs of effectors such as ailerons, eleva-
tors and flaps, generate non-linear contributions to the
vehicle yawing moment. Figure 1 shows the yawing mo-
ment that is generated by deflecting the right elevon of
a particular lifting body vehicle. One can see that a
parabolic fit provides an adequate approximation of the
original data. Generation of linear fits to this data for
use in a conventional control allocator that assume a
linear relationship between the moments and control ef-
fector deflections is problematic. This is because lines
fitted using either negative deflection or positive deflec-
tion data results in lines with slopes of opposite signs.
Furthermore, since no single line can accurately model
the data and no matter which line is selected, the sign
of the yawing moment estimate will be incorrect half of
the time.

Here we examine a case where a LR pair of elevons exerts
a yawing moment N that is proportional to the square
of deflection and rolling and pitching moments L and M

-3 1
-30 -20 -10 [} 10 2 30

Figure 1. Yawing Moment due to Right Elevon Deflection

that are linear funétions of deflection

L =Lle¢sle + Lre‘sre ' (l)
M =Mlc61¢ + Mre(sre : (2)
N =N1,2512¢ + N,,n&':’, 3)

From the curve fits to aerodynamic data for a lifting
body model at a subsonic flight condition, we select
N,z = —Nj2 = 34 ft-lb/deg® and L, = —L;=
—4610 ft-Ib/deg, and M. = M, = —2489 ft-l1b/deg.
The AMS is generated by holding each control surface
at a fixed deflection while allowing the other surface to
vary over its range of possible values and is shown in
Figure 6. Note in particular that the shape of the AMS
is hyperbolic paraboloid. This saddle shape is a charac-
teristic of left-right pairs on any aircraft.

The AMS is also shown in Figure 3 for the yawing mo-
ment as a linear function of the deflections. For the linear
approximation we fit data over half of the range of deflec-
tions to obtain Nj. = —N,. = £676 ft-Ib/deg. The sign
ambiguity results from the yawing moment derivatives’
dependency on the sign of the deflections; either choice
of sign will only yield a yawing moment with the cor-
rect sign over half of the deflection range. The AMS for
the linear case shows that a control allocator that incor-
rectly assumes a linear relationship between the yawing
moment and the effector deflections will be constrained
to rolling, pitching, and yawing moments that lie on a
plane in moment space. The AMS for the improved ef-
fector model (Figure 2) shows that larger regions in the
roll-yaw plane are reachable and the intersection of lines
of constant effector deflection define the proper blend of
effectors required to achieve a particular rolling , pitch-
ing, and yawing moment that lies within the AMS.
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Figure 3. Linear AMS for a Single Left-Right Pair

3. DETERMINATION OF THE COMPOSITE AMS
FOR MULTIPLE EFFECTORS

The generation of an AMS for a single LR pair is rel-
atively straightforward. Here we would like to explore
methods for generating the AMS for multiple LR effec-
tor pairs. To consider how this might be accomplished
we consider the rolling, pitching, and yawing moments
that can be generated by two LR effector pairs of the
form

L =L18y + Lads + L3d3 + L4d4 @)
M =M;8; + Myby + M3z + My, )
N =N16% + N2b2 + N36% + N,y62 ©6)

Since there is no aerodynamic coupling between the con-
trol effectors, Equations 4-6 can be written as follows:

L=Lys+ Ly )
M =M;s + M3y ®)
N =N + Nay 9)

Therefore, the composite AMS may be generated by
placing the origin of the AMS for one left-right pair
at each point on the AMS of the other left-right pair.
This approach is sufficient for generating every attain-
able moment; however, a criteria is needed to determine
the boundary of the AMS. We will explore the possibil-
ity of using swept volume theory to construct the AMS,
but due to the fact that the methods for evaluating the
boundary are exhaustive searches over each candidate
surface, we will present another method that extends
the work put forth in Reference {3] that is more compu-
tationally efficient.

Swept Volume Theory

Swept Volume Theory is a field of study of that encom-
passes engineering, mathematics, and computer science
and is concerned with the computation and visualization
of complex geometric shapes. A swept volume is defined
in Reference [4] as “the volume generated by the motion
of an arbitrary object along an arbitrary path (or even
a surface) possibly with arbitrary rotations.” Swept vol-
ume theory has applications ranging from robotics to
computer aided manufacturing to human factors. In the
area of robotics, swept volume theory is used to analyze
the workspace to ensure that conflicts between robotic
arms can be avoided. For computer aided manufac-
turing, swept volume theory is used to determine the
amount of material a tool removes as it moves along a
surface in numerically controlled machining. More ap-
plications of Swept Volume Theory can be found in the
survey paper by Abdel-Malek, Blackmore, and Joy [4].
The formalism of swept volume theory is presented here
because of the recognition that the sweeping of one AMS
for a first pair of left-right control effectors over the AMS
for a second left-right pair will generate the composite
AMS.

Let us begin by considering some arbitrary object that
is defined by the parametric equation I'(u). This object
is swept along a curve or surface that is parameterized
by ¥(v). Furthermore, the rotation matrix, R(v) de-
fines the orientation of the object at every point on the
trajectory defined by ¥(v). The Swept Volume is then
defined as

£(q) = R(v)T'(u) + ¥(v) (10)

where g7 = [u; u2 ... Um v1 V2 ... v,) is the extended
vector of length m + n. Furthermore, it is assumed that
each of the parameters g¢; are bounded from above and
below g, < ¢; < . Note that £(q) describes the entire
set of accessible points in the swept volume. In general,




the system of equations given by Equation 10 will only
be square if the body is being swept along a curve. In
the more general case of sweeping along a surface, we
are dealing with an underdetermined set of non-linear
equations.

If we consider a fixed vector, g,, and we linearize Equa-
tion 10 about this point, we get

Ag(q) = £(qo) + J(go)(q — g0) + O(R) (11)

where J = [9¢;/8q;] is the 3 x (n + m) Jacobian Ma-
trix for Equation 10. Singularity of the Jacobian implies
that the sweep equation (Equation 10) is a local max-
imum or minimum for some set of values. In the case
where the trajectory is simply a curve, determining the
singular points of the Jacobian is rather straight-forward.
Abdel-Malek and Yeh [5] generalized the result to higher
dimension trajectories, and they further show that there
are three conditions under which the Jacobian becomes
singular. These conditions in turn can be specified in
terms of the rank deficiency of the Jacobian and sub-
sequently will generate the candidate surfaces for the
boundary of the swept volume. The three criteria that
are outlined in Reference [5] are

1. The rank-deficiency singularity set

2. The rank-deficiency of the reduced-order accessible
set i

3. Constraint Singularities.

The rank-deficiency singularity set in Item 1 is deter-
mined by considering the n + m combinations of the
columns of J that will make it 2 3 x 3 matrix. The de-
terminant of each sub-matrix is then computed, and the
n + m equations are solved simultaneously for those val-
ues of g which will render the Jacobian singular. This set
of points is denoted as $; = {§ € R"|dim NullJ(q) > 1}.

In Item 2, a reduced-order set of equations is formed by
taking one of the generalized parameters, ¢;, and setting
it at one of its limits in Equation 10. A new Jacobian, or
subset of Jacobians if n+m > 4, Jg, is then found for the
reduced-order equations. The determinant of the new
Jacobian is then computed and solved for those values
" which cause the reduced-order Jacobian to be singular.
This is repeated considering each ¢; alone until all of the
reduced-order Jacobians have been examined with each
of the n + m parameters set at their upper and lower
bounds. We now have a second set of singular points that
we will denote as S; = {§ € R?|dim NullJg(q) > 1}.

In Item 3 it is recognized that a boundary is reached
when all but 2 of the generalized parameters, -g;, are
set to one of their limits. By enforcing n + m — 2
constraints to be active and varying the two free pa-
rameters over their allowable range, surfaces are gen-
erated which are embedded in R3. Although these

surfaces don’t necessarily cause a rank-deficiency con-
dition, they nevertheless must be evaluated in order
to determine whether they are on the boundary (note
the similarity with Durham’s [2] approach for the con-
struction of the linear AMS.) There will be a total of
2(n +m)(n+m — 1) surfaces resulting from the applica-
tion of the parameter constraints. For the case that we
will consider where we have n + m = 4, we will have 24
candidate surfaces. The final set of points to consider
as candidates for the boundary of the swept volume is
S3 = {q € R*jg; = ¢/'™ and ¢; = '™, i # j} where
gh'™ is either the upper or lower limit for g;.

The set S = S1 U S2U S3 defines the set of surfaces that
are candidates for the boundary of the swept volume.
While the determination of the candidate surfaces is a
rather straight-forward procedure, determining whether
a surface, or even an area of the surface is on the swept
volume boundary is non-trivial. In fact, this is an area of
active research within in the swept volume community.
We will then outline a few approaches and discuss the
difficulty with their implementation.

Application of Swept Volume Theory— The moment equa-
tions, as they are stated in Equations 4 - 6, fit nat-
urally into the framework of Equation 10. We define
U(v) = [Ki(6y — &2) Km(81 + 8) Kn(67— ST and
I‘(u) = [C[(&a —84) Cra(93 + 64) Cn(Jg - 62)]7' Since
we are only concerned with a pure translation of I'(u)
over ¥(v), the rotation matrix, R(v), then becomes the
identity matrix, I3. We form the Jacobian for the sweep
equation

K ~-K G -G
J=| Kn Km Cm Cm |. (12
2Kn.0, —2Knbs 2Cnd —2Cnds

To begin finding the points defined is S;, we need to
examine the four determinants where the Jacobian is
square. The Jacobian is made square by eliminating one
of the four columns. We then get the following four
determinants that are to be solved simultaneously for
the 6,': )

[il= —2Km(~2Cnb3Kit Kn(Ci(81 +62) + (61 — 5?1)5,))
[Jol= 2Km(—2CndsKi + Kn(Ci(8y + 02) + (=01 + agg,))
|Jal= —2Km(CaKi(03 + 84) + Ci(Cn (b3 — 84) — 2515,5,;) |
|Jal= 2Km(CrKi(d3 + 64) + Ci(Cn(—03 + 84) — 262{1]’,6‘3).

There is no solution for this set of equations; therefore,
the set Sjis the empty set {@}. To compute the set of
points for the reduced-order set, we need to select one
control and set it at either its upper or lower limit in




Equation 10 while allowing the other controls to remain
free, and then compute the new Jacobian and its deter-
minant. We repeat this procedure for the same control
at its other limit, and also for all the other remaining
controls. The result of this will be the four determinants
in Equations 13-16. The fact that the determinants for
the set S are the same as those for the set Sj is a result
of the moment equations being linear in pitch and roll
and quadratic in yaw. We now consider each of the de-
terminants individually, and determine the set of points
for which there are roots. For example, if we take d;to

be at its upper limit, we get Equation 16, and solve for
d2a s a function of 63 and §;. We then get

— C,,(C,,,K,(Jg + 54) - C(Km(53 —_ 54))

2CiCrKn an
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The candidate surface that results from substituting
Equation 17 into Equations 4-6 is shown in Figure 4.
Note that there will only be three additional surfaces
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Figure 4. Candidate Surface for the AMS Boundary

.that are candidates for the AMS boundary. Because

there is only one control effector that appears in any one
column of the Jacobian matrix, the determinant is the
same for regardless of the whether the control effector
is at its upper or lower limit. Also, care must be taken
to ensure that the dependent variable (6; in the case
above) remains within its position limits. This may re-
sult in the independent variables being constrained to an
interval that is a subset of the one defined by its upper
and lower limits.

The last step is to set two of the control surfaces at their

limits and to allow the other two to remain free. Tliis is-

repeated until for all combinations of controls set at their
limits, resulting in 24 more surfaces that are candidates.

Determination of the Swept Volume Boundary—The deter-
mination of the swept volume boundary is a challenging
problem that remains open {4]. There is no generally ac-
cepted method that will allow for the easy identification
of the boundary. In this section we will discuss attempts
to implement, among other things, a perturbation tech-
nique as well as a technique based on the calculation of
the “normal acceleration” on each candidate surface.

Consider a candidate surface, z = f(d) where § = {J|d €
[8,8]}. Let 7(do) be the unit normal to the surface at
point dp and 7i,(dg) be the projection of the unit normal
on the z-axis. We now form the equation

f(8) = f(do)£ eR.. (18)

where ¢ is some small number. The rationale behind
Equation 18 is that if a point dp lies on the boundary
of the swept volume (or AMS), then there will only be

‘one solution to Equation 18, which will correspond to

the solution internal to the volume. Conversely, if the
point &g is internal to the volume, there will be two
solutions to Equation 18, both internal to the volume.
In Reference [5], Abdel-Malek and Yeh claim that us-
ing the perturbation equation alone is not sufficient, and
that this approach works best when used in conjunc-
tion with a method that finds the intersections of all the
candidate surfaces. This is needed to remove any am-
biguity. In any case, Equation 18 needs to be solved
for every point on the candidate surface. Since we are
dealing with an underdetermined set of equations in this
instance, a numerical root finding technique must be em-
ployed to determine the solutions to Equation 18. The
pitfall here is that a numerical root finding algorithm will
tend to find the root nearest to the initial guess. In gen-
eral, there may be multiple solutions, both feasible and
non-feasible, to each root finding problem. It has been
observed that there are points internal to the boundary
that are deemed to be on the boundary because the so-
lution vector returns a vector that is out of bounds. To
insure that there are no feasible solutions to the pertur-
bation equation, one would have to find all the solutions
at the particular point of interest in order to rule out
whether or not that point lies on the boundary. An al-
ternate approach would be to pose the above problem as
a constrained optimization problem and check constraint
satisfaction for each point. However, if formulating the
problem in this manner is more advantageous over the
numerical root finding, it may be best to proceed directly
to solving the non-linear programming problem without
constructing the AMS.

A second approach that is discussed in the literature
is the method put forth by Abdel-Malek, Yeh, and Oth-
man [6] that takes into account the curvature of the can-
didate surface and an “acceleration” term for a fictitious
particle moving on the candidate surface. The acceler-
ation term is defined to be the “difference between the
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Figure 5. Achievable Yawing Moments for M=0

—~2489 ft-lb/deg, K, = —34 ft-Ib/deg®, C = Ki/2,
Cm=Kp,and C, = K, /4. If we fix L = M = 0, we
get two minima with a value of —22,950 ft-Ib. Phys-
ically, this implies that there are two different com-
binations of control surface deflections that will pro-
duce the minimum yawing moments while satisfying the
constraints on the pitching and rolling moments. The
control surface deflections corresponding to these min-
ima are 61 = 22.5,62 = 7.5,53 = —30,64 = 0 and
0 = —225,0, = —7.5,03 = 30,04 = 0. To find the
maxima, one simply changes the sign of Equation 30 the
yawing moment, and repeats the steps above. In this
case we get two maxima where N = 22,950 ft-lb.

The utility of this method is shown in Figure 5 where
the AMS is shown over the range of rolling moment with
pitching moment fixed to be zero. To compute the AMS,
one simply needs to iterate over all values of L and M
and determine the maximum and minimum values of
yawing moment for each ordered pair. This approach,
although exhaustive, provides an accurate estimation of
the AMS. Although the approach outlined above requires
that a discrete set of points in the domain is selected,
and all the possible Kuhn-Tucker points constructed, it
is nowhere near as computationally intensive as any of
the methods discussed above, which require that each
point on each candidate surface be checked for optimal-

ity.

The composite AMS is shown in Figure 6. As a compar-
ison, Figure 7 shows the AMS generated by the linear
approximation. Note first of all the difference the shapes
of the two AMS’s. The linear AMS predicts the correct
projection onto the L-M plane, but the yawing moment
is either overestimated or has the incorrect sign. The
non-linear AMS provides a much more accurate repre-

Yawing Moment
2

Pisting Mamert

Figure 7. Linear Attainable Moment Set

sentation of the aircraft’s aerodynamics. Execution time
was on the order of 1.2 minutes in the Matlab environ-
ment. It is expected that the algorithm’s performance
would increase significantly once the algorithm was im-
plemented in another language, such as C.

4. CONCLUSIONS

A method for the determination of the attainable mo-
ment set for a class of multiple non-linear control effec-
tors was presented. The method extends previous work
that was done on the generation of the non-linear at-
tainable moment set boundary in the planar case to the
three-dimensional case, and was illustrated by consider-
ing single and multiple left-right control effector pairs.
The Jacobian Rank Deficiency Criteria from Swept Vol-




ume Theory was used to construct the set of control
effectors and their corresponding candidate surfaces for
the boundary of the attainable moment set. The first
order necessary conditions were then derived for a point
to be on the boundary by considering a non-linear pro-
gramming problem. An algorithm was given where the
Kuhn-Tucker points for a given point in the pitch-roll
plane are constructed for each control effector configura-
tion that forms a candidate boundary. The Kuhn-Tucker
points are then checked for feasibility, and the points on
the boundary are the ones that maximize and minimize
the objective function. This method is computationally
efficient despite the fact that a large set of points in is
searched since the evaluation of the Kuhn-Tucker points
is straight forward and less computationally intensive
than those methods which require an exhaustive search
over every point on each candidate surface.
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